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Abstract. The quantum mechanical version of Ewald’s extended dynamical theory of dif- 
fraction is used lor the study of the transmission and reflection of neutrons by a crystal. It is 
shown that the total reflection of neutrons at grazing incidence on a crystal is formally 
equivalent to the total reflection at the Bragg rellection position. Ewald’s quantum mech- 
anical and Fresnel’s classical formulae lor reflection and transmission at grazing incidence 
are compared. 

1. Introduction 

As the refraction index of neutrons in crystals is smaller than unity, total reflection at 
grazing angle of incidence occurs. This effect is usually explained in a similar way as in 
classical optics, by applying the Fresnel formulae to the de Broglie waves (Sears 1989). 
Ofcourse,if thewavelengthof neutronsisof thesameorder asthelatticeconstant of the 
crystal, the use of Fresnel’s formulae (which, strictly speaking, are valid for continuous 
isotropic media only) is clearly an approximation (Litzman and R6zsa 1983, Litzman 
and Sebelovi4 1985), the validity of which should be verified within some microscopic 
theory. A more precise method considering at grazing incidence the discrete structure 
of the crystal was applied by Vineyard (1982), who used the distorted-wave approxi- 
mation and by Dietrich and Wagner (1984) who used the Green function for the half- 
space together with a modified first Born approximation. In both papers the reflection 
of the electromagnetic waves is studied; this is formally more complicated than the 
reflection of neutrons considered in this paper. The paper by Smirnov (1977), who 
studied the total reflection on an amorphous film using a method similar to Darwin’s 
dynamical theory, should be mentioned too. 

Our approach is quite different. We shall use the quantum mechanical version of 
Ewald’s dynamical theory of diffraction and show that the total reflection at grazing 
incidence on an ideal crystal can be understood as a special case of the Bragg reflection. 

The detailed proof of this assertion is given below, but it is quite evident, considering 
the reflection of neutrons on a semi-infinite simple cubic lattice with lattice vectors ae,, 
my, ae,. Let us suppose that the surface plane of the crystal is the plane of the vectors 
e,, ey; further e, points into the crystal, and the wavevector of the incident beam is k, 
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where k,  > 0. From simple symmetry considerations it follows that the wavevectors of 
the reflected beams are 

K ,  = (k, + p k / a ) e ,  + (ky + s h / a ) e ,  - KpqIez p ,  q integers (1.1) 

where 

K,, = + [kz  - (k ,  + pZrr/a)’ - ( k ,  + q h / ~ ) ~ ] ’ / ~ .  

In regard to the results of the dynamical theory of diffraction, the reflected beam is 
strong if the vectors k and K i q  satisfy approximately the Bragg diffraction condition 
which, in our simple case can be written as 

Kpqz + k ,  = n k / a  + &/a 

2k, = n h / a  + &/a. 

IEl Q 1. (1.2) 

(1.3) 

For a specularly reflected beam,p = q = 0, i.e. Kmz = k,, and equation (1.2) reads 

At grazing incidence ak, 4 1. Thus, (1.3) can be satisfied for n = 0. It will be shown in 
section 3 that the reflected beam is “strong” (i.e. that total reflection at grazing incidence 
occurs) if the index of refraction is smaller than unity. 

In the following we shall study the reflection of neutrons at grazing incidence on a 
crystal of finite thickness. The handling of this problem from the point of view of the 
dynamical theory of diffraction seems to us to be important, considering the number of 
many papers in which a more general case is studied, i.e. the Bragg scattering excited 
under the conditions of total external reflection (Afanas’ev and Melkonyan 1983, Zei- 
linger and Beatty 1983). 

2. Extended dynamical theory of ditrraction in Ewald’s picture 

In the following we shall deal with the scattering of neutrons on crystals, using the 
quantum mechanical generalization of Ewald‘s dynamical theory of diffraction (Ded- 
erichs 1972. Sears 1989). Let us recall briefly the main results of our previous papers on 
the dynamical theory of diffraction of particles on a periodic system of point scatterers 
(Fermi 6 potentials) (Litzman 1986, Litzman and Dub 1990). We shall deal with the 
diffraction of the plane wave fexp(ik . r) on a simple lattice forming a crystal of finite 
thickness (figure 1): 

R, = mlal  + mzaz + m3a3 

P- ’  = In1 x a ~ l a 3 ~  a32 ’0 (2.1) 

m = b t , m 2 , m d  

m r , m Z = 0 , ? 1 , i 2  ,..., + a  - m3 = 0 , 1 , 2 , .  . . , N .  

The origin of the orthogonal coordinate system is at the lattice point (0, 0, 0), the 
plane Oxy coincides with the crystal surface plane (ar, a,). The axis Oz (unit vector e,) 
and the vector ai x a2 point into the crystal. The lattice (g,,g2, g3) is reciprocal to the 
three-dimensional lattice (a l ,  a,, a3),  i.e. g, . a, = hd,,, i ,  j = 1,2,3, whereas the lattice 
(b,, b,) is reciprocal to the two-dimensional lattice ( a l ,  a2), i.e. b, . a, = 2 4 ,  b, 1 e3, i ,  
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Figure 1. The scattering geometry The two-dimensional crystal lattice (a,, 03 I e, forms 
thesurfaceofthecrystal. k =  kl+ dIisthewavevectoroftheincidentbeam;n/2- wisthe 
angle of incidence. K&(k) = kil + pb ,  + 9b2 - e,K,,,(L) is the wavevector of the reflected 
wave, where @.9) are integers, (b , ,  b2) 1 e> is the reciprocal lattice and K,,,(k) = 
[k' - (k" + pb ,  + qbJ*]'R. 

j = 1,2. Further, cll and cL denote the components of the vector c = cl[+ cL parallel and 
perpendicular to the crystal surface, respectively. Then 

bi =gi I/ bz =g2 11 gl = o  

Let k be the wavevector of the incident wave; k, > 0. We assign to this vector k and 
to each @, q ) ,  wherep, q are integers, three other vectors kiq andK,'(k), as follows: 

k!q = kll + pb ,  + qb2 

~ & ( k )  = k19 2 e3Kpqi(k)  
(2.2a) 

where 

KP9'(k) = +[kZ - ( k 9 * ] ' / * .  

This means that 

IK;Jk)l = k. 

For @, q )  = (O,O), it holds that K&(k) = k and Km(k) = k,. Further, we define Oj9  as 

(2.26) 

The wavefunction "(7) describing the diffraction of particles on a simple perfect 

OF9(k) = a,K&(k) = a3kp9 1 II 5 u ~ K , , ( k ) .  

lattice formed by 6 potentials is (Litzman 1986, L i m a n  and Dub 1990) 

which is a superposition of the incident plane wave fexp(ik. r) and of the spherical 
wavesexcited by the point scatterers forming the crystal (2.1). The diffraction amplitude 
of the nth atom is Qq"(R,), where Q = Qo/(l + ikQo) is .the diffraction length of the 
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scatterers ( Qois real). The "effective field" q"(R,) incident on the nth atom must satisfy 

Since the translational symmetry of our problem in the directions of the vectors (I] 
and u2 is conserved, it is clear that the wavevectors of the reflected particles are the 
vectors Kiq and the wavevectors of the transmitted particles are the vectors K:q (2.20) 
only. 

From equations (29) and (30) of Litzman (1986), we found the solution of equations 
(2.3) and (2.4) to be in the form 

for z > Nu,, where the coefficients R,(O&) and R,(e,.,) are given by equations (38) and 
(39) of Litzman (1986). In order to use these formulae we need the quantities Vi which 
are the solutions of the "dispersion relation" given as equation (57) of Litzman (1986): 

exp(ieiq) exp( 
1 + QS'(kl1) - b,, ( + ) = O  (2.7) ,, exp(iV) - e x p ( i Q  exp(-iq) - exp(-ie,) 

in which S'(@) is the two-dimensional lattice sum (Litzman 1986, appendix) and 

b p q  = - ~ + Q / l ~ i  X 4 K p q z .  (2.8) 
The poles of the expression on the left-hand side of (2.7) have an important 

physical meaning. As shown by Litzman and Dub (1990, appendix I), the condition for 
the confluence of two poles in (2.7) 

e&, = e;q + j 2z  

K& = k + q g ~  -ig3 (KFq)' = kZ. 

jinteger 
is equivalent to 

(2.94 

(2.96) 
Thus ( 2 . 9 ~ )  means that the incident vector k satisfies the Bragg condition for the 
reflection in the direction of the vector K&. 

Let us assume that 
e&, = e; + j2x + 11 1111 Q 1 (2.9c) 

holds. Using for the evaluation of the coefficients R,(B;) and R,(O&,) a similar pro- 
cedure as in the work by Litzman and R6zsa (1990) we get for the reflected wave in the 
direction of K; (see (2.5)) 

U:, = (1/Kr8z)R,(K) exp(ie;) expW; * r) =f(k/Kmz)'p sgn QO exp(iq/Z) 
xexp( -ik-a,)exp[i; . (r+~~)] / [Y-(Y2-1)~~~cothY] r < O  (2.10) 

and for the transmitted wave (see (2.6)) 
U& = -(l/kz)Rt(e&,)exp(-ilve&) exp(ik.r) 

= (-f/sinhY){(p - l ) ' P ( ~ I ~ z ) ( N f ' ) ~ / [ Y -  (Yz - l)'pcohY]} 

x expr i .  [r - (N + I)u3]} z > Nu,,. (2.11) 
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Theparametersusedin(2.10)and(2.ll)have thefollowingmeaning(Litzmanand Dub 
19x0: 

3. Grazing incidence 

At grazing incidence, 

as&, = -a& 
i.e. according to (2.26) 

8&(k) = 8&(k) + q 
which means that the grazing incidence can be understood as a special case of the Bragg 
reflection (2.9~) whereby in the dispersion relation (2.7) the poles 8& and 8& nearly 
coincide. Thus, to get the reflected and transmitted waves at grazing incidence, we put 
in the expressions (2.10)-(2.12), (2.14) and (2.15) 

FollowingLitzmanandDub(1990),if, = 1 + Q,/uandfurtheritcan beshown that 
( 4 l ~ l / H , ~ ) - ~  = O ( ~ X I ~ ’ ~ ) .  
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Let us compare our results (3.4H3.7) with those offered by the procedure in which 
the crystal is supposed to be a continuous medium described by the potential (Sears 
1989) 

00 = (%fiz/m)pQo 

or the refraction index 

n = (1 - V ~ / E ) ' / ~ .  

In this case we have to solve the Schrodinger equation 

-(fiz/2m) Au = EU 
-(h2/2m) Au + uou = Eu 

<O,z > d 
d < z < O .  

The solution reads 

U = fexp[i(xk, + zk,)] + A exp[i(xk, - zk,)] 

U = Bexp[i(x~, + ZK,)] + Cexp[i(xx, - ZK,)] 
r<O 
O > z > d  

r < d  U = D exp[i(xk, + zk , ) ]  

where 

k2 = (Zm/h2)E K' = kZ - (2m/hz)vo.  

Requiring that u(r)  and grad U(.) be continuous at the boundaries we get 

k, = K, 

i.e. 

K, = (ki - 4xQ0p)'fi sgn(kf - K:) = sgn Q, 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

together with a system of four linear algebraic equations for the amplitudeSA, B, C, D 
in (3.11) which will not be given here. By a standard procedure we get for the reflected 
wave 

U& = Cfexp[i(xk, - zk,)]}/[y - sgn(k: - x;)(yz - 1)lfi coth qJ] (3.14) 

and for the transmitted wave 

u b  = (-f/sinh q ) { ( y 2  - 1)lfi exp(-idk,) exp[i(xk, + zk,)J}/[y sgn(k: - ~ f )  

- (yZ - 1)'/' coth VI. (3.15) 

We have introduced 

y = -1 + k:(%Qop) = -1 + qZ/Sr (3.16) 

qJ = idK, = i ( d / ~ ~ ~ ) ( 4 1 x / / q ) ~ .  (3.17) 

We can see that the quantum mechanical Ewald formulae (3.4) and (3.5) have the 
same form as the Fresnel formulae (3.14) and (3.15); the physical meanings of the 
parameters Y (3.6), Y (3.7) and y (3.16) and qJ (3.17) are of course different. The 
differences are of the order of $and Ixl'fl. 
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Comparing (3.7) with (3.17) we can see that the thickness of the crystal containing 
N + 1 rows should be taken as 

d = ( N  + l )a ,  (3.18) 

(rather than Na3J. This also explains the phase factor exp(-ia,,K,) in (3.4). 
Analysing the solution (3.11) for a semi-infinite crystal we find that in asemi-infinite 

crystalwithout absorption we must put coth 1~ = coth Y = -1 in (3.4) and (3.14). Then 
these equations yield 

l & l Z  = lfl’ forlyl, lyl 1. (3.19) 

Thus the condition for the specularly reflected wave U& in the superposition (2.5) to be 
strong is IYI C 1. It follows from (3.6) that in this case the inequality sgn Qo > 0 must 
hold, i.e. the refraction index n (3.9) is smaller than unity. 

The conditions for the limits of the total grazing reflection angles (U are (see (3.6) and 
(3.16)) 

Y = 1, i.e. (a,,ksin a)’ = 41nl[l + O(x) + O(Qo/a)] 

y = 1, i.e. (a,,ksin (U)’ = 41x1. 
(3.20) 

4. Concluding remarks 

Using Ewald‘s quantum mechanical conception of the dynamical theory of diffraction 
(Litzman 1986, Litman and Dub 1990), we can see that the beam incident at a very 
small grazing angle satisfies the Bragg reflection condition. Thus the intensities of the 
reEected and transmitted rays can be evaluated using the general formulae of the 
dynamical theory of diffraction for the Bragg reflection. The reflection curves given by 
the Fresnel formula (3.14) and by the Ewald dynamical theory of diffraction (3.4) for 
the semi-infinite crystal (coth t) = coth Y = -1) are presented in figure 2 for x = 
and the bounds of the intervals (qE, qF) for Y = and W5 are evaluated as 
well. (For Si, Y = Qo/a = In a crystal with absorption, Q, is complex and the 
deformation of the shapes of the reflection curves similar to the well known deformation 
of the rocking curves of the x-rays (of course with0ut.a shift) is to be expected, but the 
intluence of absorption is generally much less important for neutrons than for x-rays 
(Rauch and Petraschek 1978). 

The corrections introduced by the dynamical theory of diffraction into the standard 
Fresnel formulae of neutron optics (Sears 1989) are small. However, it is not clear how 
the above-used Ewald method influences the results of the commonly used Laue theory 
in a more general case, when the grazing incident beam satisfies simultaneously the Bragg 
reflection condition for planesnearly perpendicularto the crystal surface (Afanas’ev and 
Melkonyan 1983, Bernhard et a1 1987, Hashizume and Sakata 1989, Jach et a1 1989, 
Rhan and Pietsch 1990, Rieutord 1990, Zeilinger and Beatry 1983). In this case, not two 
but three or more poles of the dispersion equation (2.7) coincide but equations (2.5) 
and (2.6) do not change. Then (Litzman 1991) there is a substantial difference between 
Ewald’s and Laue’s conceptions of the conventional and extended dynamical theory of 
diffraction. 
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F-2, ReRection w e s  given by the Fresnel formula (3.14) and by the Ewald dynamical 
theory of diffracfion (3.4) for the semi-infinite crystal: J = nQu?l.l#, x u21” - lo-‘; ?J = 
2a,ksin U. Numerical values of the bounds of the interval (&, &) for some values of the 
parameterx:x = 10~a,(0.1264700,0.126491 1 ) ; x  = 10~4.~0.0399993,0.0400a00);x = 
(0.0126490,0.0126491). 
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